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II. On the Attractions of an extensive Class of Spheroids. By
J. Ivory, A. M. Communicated by Henry Brougham, Esg.
F.RS MP.

Read November 14, 1811.

T this discourse I propose to investigate the attractions of a
very extensive class of spheroids, of which the general de-
scription is, that they have their radii expressed by rational
and integral functions of three rectangular co-ordinates of a
point in the surface of a sphere. Such spheroids may be cha-
racterized more precisely in the following manner: conceive
a sphere of which the radius is unit, and three planes inter=
secting one another at right angles in the centre; from any
point in the surface of the sphere draw three perpendicular
co-ordinates to the fixed planes, and through the same point
in the surface likewise draw a right line from the centre, and
cut off from that line a part equal to any rational and integral
function of the three co-ordinates: then will the extremity of
the part so cut off be a point in the surface of a spheroid of
the kind alluded to; and all the points in the same surface
will be determined by making the like construction for every
point in the surface of the sphere. The term of a rational
and integral function is not to be strictly confined here to such
functions only as consist of a finite number of terms ; it may

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to |[&

£

Philosophical Transactions of the Royal Society of London. STOR M

www.jstor.org



On the Attractions of an extensive Class of Spheroids. 4%

include infinite serieses, provided they are converging ones;
and it may even be extended to any algebraic expressions that
can be expanded into such serieses. This class of spheroids
comprehends the sphere, the ellipsoid, both sorts of ellip-
‘tical spheroids of revolution, and an infinite number of other
figures, as well such as can be described by the revolving
of curves about their axes, as others which cannot be sor
generated. : _

In the second chapter of the third book of the Mécanique
Céleste, Laprack has treated of the attractions of spheroids of
every kind ; and in particular he has given a very ingenious
method for computing the attractive forces of that class which
in their figures approach nearly to spheres. In studying that
work, I discovered that the learned author had fallen into an
error in the proof of his fundamental theorem ; in consequence
of which he has represented his method as applicable to all
spheroids whatever, provided they do not differ much from
spheres ; whereas in truth, when the error of calculation is
corrected, and the demonstration made rigorous, his analysis
is confined exclusively to that particular kind, described above,
which it is proposed to make the subject of this discourse. I
have already treated of this matter in a separate paper, in
which I have pointed out the source of LaprLace’s mistake,
and likewise have strictly demonstrated his method for the
instances that properly fall within its scope. In farther con-
sidering the same subject, it occurred to me that the investi-
gation in the second chapter of the third book of the Mecanique
Celeste, however skilfully and ingeniously conceived, is never-
theless indirect, and is besides liable to another objection of
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still greater weight; it does not exhibit the several terms of
the series for the attractive foree in separate and independent
expressions: it only points out in what manner they may be
derived successively, one after another ; in so much that the
terms of the series near the beginning cannot be found with=
out previously computing all the rest. This remark gave
occasion to the following paper, in which it is my design to
give a solution of the problem which is not chargeable with
the imperfections just mentioned : the analysis is direct, and
‘every term of the series for the attractive force is deduced
immediately from the radius of the spheroid. As the ellipsoid,
which comprehends both sorts of elliptical spheroids of revo-
lution, falls within the class of figures here treated of, I have
derived, as a corollary from my investigation, the formulas
for the attractions of that figure which are required in the
theory of the earth: this paper therefore will contain all that
is useful on the subject of the attractions of spheroids, as far
as our knowledge at present extends, deduced by one uniform
mode of analysis. |
Having mentioned the principal object of this discourse, I
must likewise notice a subordinate purpose I have in view ; it
is to put in a clear light the real grounds of LAPLACE’s me-
thod, and of the equivalent method delivered in the following
pages; to the accomplishment of which nothing is likely to
contribute so much, as a direct and rigorous analysis perspi-
cuously conducted. To promote the same end still farther, by
preserving greater order and perspicuity in treating a subject
in its own nature very complicated, this paper will be divided
into two principal sections: in the first sectlon it is proposed
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to'lay down the ahalytTCAI"’pfbiosifions on ‘which the investi-
gation 15 founded : the sectnid section will contain the solutlon
of the probiem under consideration,

‘One more: prehmmary observation 1t is proper to add. The
proolr.m of attractions ‘contains two cases, when the demlty
of the attracting body is uniform throuo'hout ‘when it varies
according to any given law: it is in the first of these two
cases that-the chief difficulties occur; and as I have notlhug
new to add on the second case, I shall here confine my atten-
‘tion'to homogeneous °pheroxds, unit being supposed to denote
the density.

I
Preliminary. Investigations.
1. Let u denote the cosine of an angle, and let
f {7‘— 2ra . p -}-a’lz-

then the truth of the following equation in partial fluxions
will be proved merely by performing the operations mdxcate,d

viz. o
] AT PR ) n41 ,
f2n+ 3 fzn + 3 )
'Now ‘pl;t S = f_z-n_—i-_' then .
ds : —
(._2) —_— (2n+ 1). ;zn .;1—;
1" dS

1
ra (917) = 2n+1 “famt3J
therefore, on account of the first equation, we shall obtain by

substitution,
MDCCCXII. H
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—r (1= )" (42 + {4- fomprt (g‘i)}} =0

dadr &

2. Let -} be reduced into a series of the descending powers.
of 7; then

3= CO iy c®. L pc?. L P, &e.

z+1’

and Cl will be a ratienal and integral function of 1z.of i dimen=~

sions: substitute this series for S in the equation last found

{n being == 0), and we shall obtain

dc(®)

Cor a4y o d'{(x—”z) dw N

4 (l “%“ I)C ’ '“i'_‘“ dfl; =220 wenee (1).

Again, take the fluxions z times successively in -}- and like-

wise in the series equivalent to it, making p the only variables
and we shall get :

[ et S
2nf1 °

fen 41 T Ee3. Gzl * e 271-*;2; * dur evorsuto
I 35 dp. r t*

a_-n dﬂc(l)
+ ,z+n+l di o & }

substitute this series for Sm the equation of No. 1, and we
shall get

z)”+! articli) }

\ | .
{Z""n) (Z+n+1) . (1 )” ac C(I) ‘ { dllﬂ-r]
2220 eernnns (2 ).

From this last equation it follows that

(@
SJo—wy 2 de=0

when the fluent is taken between: the limits g == — 1 and
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p==1: for the fluent in question is equal t0 w pomemmr =
il

d‘un-}-l

(1—p)"Fr. , a quantity which is evanescent at both
the linits. ' ‘

2%cld)
a';no _
the equation (1) will be included in the equation (¢); whence

If we consider 25" as a symbolical representation of c,

.. . . 470 i)
it is easy to infer that whatever is proved of 3-—:5-( by the help
“/u

of the equation (2) may be transferred to ¢t by putting
7 = 0; a remark that will enable us to consult brevity, and
of which we shall freely avail ourselves.

g. It is now proposed to find the value of % in a series
of the powers of x.* The equation (2), by expanding its last
term, will become

Lo ; dc() dd(‘()
z(z+1)C(’)-—2p.JM— (-—-‘L{;) e =0

let the series .
AQ g AW i g AP ik LA e e,
be assumed as equivalent to C?; then by substituting and

eq’uatmg the coefficient of p =25 to 0, we shall get
A(s) — (z-—z v-.;-z) (i—2z2s41) A(S—-l)

25 (2i—~2 s+ 1)
and, by putting s =1, s =2, &c. successively, we shall hence
be able to determine the proportions of all the coefficients to

the first one A, which must be investigated from other
. : i :
considerations. Now C is the coefficient of -;‘,i‘?; in the ex-
7' .
® Méc. Céleste Liv, 3¢, No. 15,
He
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x
pansion of = = ==y . (1 -z;r—a_r—‘ﬁ) *; and, by the bino-

1.345 veee 2femel
2,460 22

mial theorem, the term containing @' will be ==

; whence it is

2iriald 138 .. 21 4L (i+3)
(FP+a*)idtsy T 1z 07 idr ( + )

plain that A = —i—%—i—m — : consequently,

(i) _ 135w 2iet § i i(im-1) fmz i(ime1) (fem2) (i==3)
C = 23 .. 1 2P T Zai=n + 2.4.(2i=—1) (2i—3) °

pi"* — &c.} ‘
If we take the fluxions 7 times successively in the last for-
mula, we shall obtain

anc (i) 1.3.5 2i—1 { it ofmn—1 o R~ 2
du =Tz . ~ 2.2i —1 ‘K +

il it s iR o fmttm} z-n-4 &e. }
2.4 o 2t—1 « 213 :

"o . dne(®
When 7/ —n is an even number, ~— - will contain a part,

equal to
1.3.5 e ifn41
* 2.4.6 «o. d—n ?
independent of p; and when 7 — # is an odd number, the same
quantity will contain a part, equal to
1.3.5 veee i4nm
= 2.4.0 sepe Tl 1 o

multiplied by w only: these two parts of the value of ~— aeld

»

we shall afterwards have occasion to refer to.
4. It is proposed to investigate the fluent of
( 1 Mz)n d”C( ) P d’.&,
: "
between the limits p == — 1 and p =1; supposing Ptobe a
rational and integral function of .
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v

On account of the equation (2), we get
d"c! c() ‘ .
[(1—-#) , P'd/*‘.:'"i—n.im"fp’

a1 P EIc@q
d{(I""f") .d,ﬂ“fr }’

and, by integrating by parts,

. n d C( ) I oI
f(l P dy = _i—n.i+n+1'(1.-iu') .
at lq(z) —%” j (1 _ n+, dn+ Ic(l) dP
an+r i—n. t+7z+1 " du P E S R T

and, by rejecting that part of the fluent which is evanescent
at both the limits, we have ’

,n dC() +
[(1 P d‘u'——i—n.z-}n-}nl'f(l l"')n ,'

d7z+xc(z) P
‘,&n—{-l . ('i; . f&c

In this last equation the expressions on both sides are
entirely similar; and therefore by a repetition of the same
operations we shall obtain

n +1 2 +red gp 1
j‘(l o S . -‘-l—. . dfl‘ o - - .
d{ﬁn—}-l 2 o= Neml ol fndg 2

Yy d*P
\% 4 2 d”'!’zC(’) . .
j‘(l.—f’&) ’ d/a-’l-\}_z | dp? 'dlu‘

and exterminating the integral common to both these equa-
tions, we shail get

1— ). 2 D P, = : ! |
[( I d" ‘ /‘%"_i-—-n.i—n-—lxi-}n—{-x.i-{-n—l—z.

wtz , APF2Ci pp
x‘/(l-—-p-) W.@;.d;&,

It is evident we may continue the like operations as far as we
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please: for abridging expressions let
Il b e e 1 L = D vvries Lo T e T - 1
=it ud2idntgannidntm;
then after m successive operations we shall get,
j(l-—-‘u ) .P. a"w = 1 xf(l _#,)n-l-m . d":-;nn(:(l) .
m \
j, " - .
d"p
&
will be a constant quantity, and the fluent on the right-hand
side will be = o (No. 2} : hence this theorem, viz.
< If P be a rational and integral function of w, and of less

< dimensions than 7 — 7, then
. ()
f(l-—-—{jc‘)n.dc .P. d[.l,"""O
d‘“n

< when the whole fluent is taken between the limits p = —1

If m, less then 7 —#n, denote the dimensions of P, then -

“¢and p =1."

If the dimensions of P be not less than 7 — z, put m=i—n,
and for iisi(i) write its value, 1.8.5....27—1(g); and the pre-
ceding foﬁrmula will become

f(l _ f"‘)n ‘ Z—‘Z%(i) P.du= z'.--n + 1 .i.-.-.n‘-i- 2..'.....i+.n «

® i di-nP .
Ja—w). =t

and hence, ;3(")

we have

z—-n+1 i—HF2 eeres i+n’
i d!‘—ﬂp
‘[(1 ——— [ab » T . dl,ﬁ
d‘ul——n

240 « oo oo o« ew 20 e

(ﬂ) f(l 271 d"C() P.d
W =
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By means of the last formula the fluent in question will be
reduced to the integration of expressions of this kind, viz.

gL (1— M’)i . du; a research with which mathematicians:

are familiar. In the first place when s is even; then, consi-
dering the definite fluent between the limits p = —1and p==1;:
we have

ST =) dp=o: |
and indeed, supposing P to be any odd function of .z, we have:
more generally f P . dy = o, between the same limits. I

the second place when s is odd ; then, taking the definite:
fluent as before,

jps_l . (1—-—-{&"}1 . d‘u. == -z— . zi:l-s . :l:__;l_)z . ;E;_:_il{ vorenee 'z_z-f.?
The observations that have already been made are sufficient

to point out in what manner the expressions of the fluents:
under consideration may be formed with great practical com~
modiousness.

5. Let y, u', y denote the cosines of the three sides of a
spherical triangle ; and let ¢ be the angle opposite to the side
whose cosine is y: then, according to what is taught in sphe--
rical trigonometry,

y=pp"d V1= V1< @, cos. 0

suppose farther that f = {r’ —_— 2T .y == a‘}%,,

and let

=09 7 4+Q". 5409 . S 407 £ &

it is required to expand Q(i'),, which is the same function of o

that C\ is of {, into a series of the cosines of ¢ and its mul-
tiples, *
# Méc. Cél. Liv, 3¢, No. 15..
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LarLace has proved that every one of the coefficients in the

series for —}- will satisfy an equation in partial fluxions which

is thus generally expressed for Q(i) viz.
_ ’ (i) 1adQd)
. G d.{(1—p). [
;(z+1).Q(’)+{ { d,,,'( )}} (‘—P)
This is a fundamental equation in his investigation, and it is
necessary for effecting the expansion here proposed: but we
- shall refer to LarLace’s work for the demonstration of it.*

== 0.

It is plain that Q(i), when it is considered as a function of p
and the cosines of ¢ and its multiples, may be thus repre-
sented, viz.

0(‘) 'I(O) + (1 ) H\‘) COS. ¢ + (1 —_ )T H(z)
cos. 2<p 4 &ec. :

the general term of the series being (1—p*) . H™ | cos. np,
which ought to satisfy LaPLACE’s equation in partial fluxions:
now, having actually substituted that quantity in the equation
mentioned, and having divided all the terms by cos. #g, I have
found, ’

(i—n) (i4n41). (1—p) . HY—2 (n41) p (1= p)F
dH()+( LY dau (™ _

=
and, after having multiplied all the terms by (1—,‘. )%, the
result. will be equivalent to this equation, viz.

e

() b nebr) (1mpe O+ - — =o,
whence it follows (equat. 2.) that H" —= g™ "19.(')

. d"n

, Where

* Méc. Cél, No, g, Liv. 3e, and No. 11, Liv. 2d,
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™" denotes a quantity that does not contain p 3 therefore the
() 1o g we el
general term of the series for Q' is B™ . (1—p*)= . il
cos. ng+ but as p and ' enter alike into the expression of Q¥
it is clear that they will be both. equally concerned: in every
term of its expansion : therefore the general term of the series

will be,
Yoo d”c(') ety |
B(n) . (15_.. l"") (1 —_— ) Y . ;—;;- .. COS. ;.
(el

where C'¥) is put to denote the same function of ' that ct
does of p; and p™ is a quantity that contains neither p.nor
p’>and which can only be a numeral coefficient, and.is-all that
now remains unknown.

In order to determine ﬁ("),,we must follow the process of
Larrace.®* Itis to be observed that Q@ is the coefficient of

X
e
—

i
%71-“ in the e.xpansi'om of the radical {7“*’-—- ora ..} a‘} -
7

{r’-—- ora.. (il +»/1--,u. . \/1---‘1.6 .cos.¢) + @ }7F;
which, when the squares. and. other higher ‘powers are neg--
lected, will be equal to-

{r’ — ora . €oS..¢ =} a‘*} - +ra. pu . {_‘r‘-—;gm\ . €OS. ¢
+ au;} -z s

from the first term of this expression are derived all the parts
of the expansion of the radical {r’:—?- ora .y 4 a=}"%' which
are independent on g and p’; and from the second term of it
are derived all those parts which contain only pg’, without the
“squares and. higher powers: now if we determine the parts

ﬁ[H

o Méc. Cél. Liv. 3¢, No. 15,
MDCCCXIIs. |
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mentioned by the actual expansion of the two radicals, and.

likewise determine the corresponding parts of Q2 by means
of the formulas in No. g; the comparison of the equivalent:
expressions will determine the values of the. coeﬁic:ents re-.
qulred ‘-
- To execute the operations alluded to, let ¢ denote the number
whose hyperbolic logarithm is unit ; then

{‘r‘-é*zm . cos. ¢ - a'}"'s = (r—a. c¢v:)"’ (r—=a .
"...ch.-x)—s .

and if we represent the expansmns of the two bmomlals by
the serieses

VeerBi S 20V —1
(x) a.c? 2 .

n—

) a.c—?—r (2)  a%c —2pV—1 |
we shall obtam the expansion of the radical by multiplying the
- two serieses: let p and ¢ denote the ranks of any two terms
in both serieses, then the part of the expansion derived from
the multiplication of the aforesaid parts, will be

AP A@ P DoV =1 —(p—pV =iy
-2A ?,A, el { - » };
) ) QLte o
or, QA(P A(q Sz rreril s. (p—q) . o
When i—n-is an even number, we have only to make
p+q._z,andp g=n,and s ==%; and we shallget

1,380 dmefl—1  L3.5uiidtt—
2460 i 7. 2,460 t+n ,

2x . COS. 19,

for the part of the coefficient of -—i‘f;r—l-, or of Q(’), which is mul-
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tiplied by cos. n¢ and clear of x and p’; but the like part of

- @ gnc® ' C .
. (1 — ). (1 —p")s. arct g_;lc_(’ . cos. ng (which is
[h

the whole expression of the part of Q() multiplied by cos. n¢)
obtained by the help of the formulas in No. g, is

n)  [1.3.5.0idn—1\2 .
B( . (m) . COS. g :

therefore by equating the equivalent expressions, we get
ﬁ(n) — 2 ' .
R Y L I L (2 o T itn
When i—2 is odd, make p 4 ¢ =1 —1; p—gq=mn; s=3:
then we will obtain

1.3.5.ibn 0 Y3 5edemn ' ‘
2.4.0.itn—1 * 2.4.0... A1 ]L}& .,COS. ﬂ‘(p

2 X

for the part of Q ) or of the coeﬂic:lent of' whlch is mul—-

+

r .

t:phed by pu' . cos, ncp but the hke patt of {3( " (1 — )
a2 C(l) dncl(l)

(1—w")*

d u . d[&n
in No. g, is

() [1.3.5..i}n : ' .
B * (2.4..(),}..1‘-—-;1__’1 . [‘l"u‘ s COS. n$.

whence we get, in this case also,

. cos. ng, obtained by the formulas

(D __ 2 .
13 A N itn "

Now if we write 2{3( 2 in the place of p() that is, if we
henceforth put (as in No. 4,)

fe—nf 1 l—nf2 . 1-—-n+3 -,—n
then all the terms of the expanswn Wwe are seekmg, will be
found by making 7 = 1, n==g,n=— 8, &c. successively, and
it will be thus expressed, viz.
Ie
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- ac®  go®d
Q(‘) c®, C'(’)+ 28, (1-—;4.) (1— ,u.")‘. z—-f- . gg,— .COS. ¢
g (&) zo(d) :
+QB(2) (1 —_ ) (1-—,.4") e S . d—g; . COS. 2¢
. dl“' d[“/ .
d’iC(i) dnCI(i)

4 zﬁ( ). (1—p)? .~(1—M'“)’f i cos. ¢
&c.

II.
Investigation of the Attractions of Spheroids of a particular Kind,

6. Instead of seeking immediately the attraction of a spheroid
in any proposed direction, it will be more advantageous to
investigate (as LaPLACE has done) the value of the expres-
sion (to be henceforth denoted by V) which is the sum of
the quotients produced by dividing all the molecules of the
mass of the spheroid by their respective distances from the
attracted point. For such is the nature of the analytical ex-
pression now mentioned, that if it be first transformed into a
function of three rectangular co-ordinates one of which is
parallel to a line given by position, and the fluxion with re-
gard to this co-ordinate be taken ; the coefficient of the partial
fluxion after its sign is changed, will dencte the attractive
force which acts parallel to the given line. In order to de-
monstrate this property of the function V, we shall suppose
that z, y, = denote the co-ordinates of the molecule dM, and

a, b, c, the co-ordinates of the attracted point: then
M ‘

V-"—"—- " " 15
, | f $(a—zr+ (b—y)*+_(c—z)’}? |
the fluent being understood to be extended to all the mole-
cules of the mass of the spheroid : now if the fluxion of this -




extensive Class of Spheroids. 61

expression be taken, xri'aking; a the only variable, we shall
have

: __(_) -—f (a—2). dM iy

| { (Pt (PP + (o 2§t
where the expression on the right hand side is the attractive
force parallel to a, as will readily appear by decomposing the
direct attractions of all the molecules into the partial attrac-
tions parallel to the co-ordinates. But, besides enabling us to
find the attractive force in any proposed direction, the func-
tion V has another advantage; for it is this function, and not
the expressions of the attractive forces, which enters into the
equation of the surface of a body, Wholly or partly fluid, in a
state of equilibrium.* S

The expression for V, exhibited above is not of a commo-

dious form, and on this account it becomes necessary to trans-
form it. Let z=R'cos.§'; y = R’sin. ¥ cos.="; and x=Rr
sin. ¢ sin. ='; then will R’ be the line drawn from the mole-
cule dM to the origin of the co-ordinates ; ¢’ will be the angle
which R’ makes with the axis of &; and =’ the angle which
the projection of R” upon the plane to which x is perpendicu=
lar, makes with a line given by position in the same plane:
from the assumed values of x, y, 2, it is easy to derive these
new values, viz.

z=R'cos. = VR —y —2*

y = R’ sm. ¢ cos. ' == v/R" sin. "¢'—

x == R’ sin. ¢ sin. = v :
and by taking the fluxions so as to make z vary with R’, y
with ¢, and 2z with »’; which will leave dz, dy, dz, as well as
dR’, df', d=’, unrelated and independent on one another as the
* Méc. Cél. Liv. 3, No. 4.
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case requires, we shall have
dp e —RAR__ R
x = VR’“—y’T—:-:-z-i T cos. ¥
R* sin. ¥ cos. 0. ' R'cos. 0.
Viismi—e o e

d_y.;_

dz = . R’ sin. ¢/ cos. =’  dw'
'consequently ( the den51ty bemg denoted by unit) dM =dz .
dy.dz=R".dR'.d¥ sin. .dw. Farther,leta=rcos. 8, b=r
sin. 0 cos. w, c=r sin 6 si'n.?za-; then, by substitution,

*V__fjf R 4R’ dYsin, O .
Vr —er’ (cos. b cos. 6"+ sin, § sin, 9’ €os. (w—rw)) + R”'

and if we put cos. = p, cos. §'=p'; then
v =fff R*.dR . dy . i

¥r*—2rR'.y 4+ R? ' } (4‘).
y=pp + V1—p V' 1—p", cos. (w'—w))

7. When the attracted point is without the surface, the ex-
pression for V, in order to embrace the whole mass of the
sphercid, must be integrated from R’ = o, to R’ = R, R de-
noting what R’ becomes at the surface; from p'= — 1 to
#'=1; and from @’ = o to »’ = 2, 27 being the circumfe-
rence when the radius is unit. In this case V must be reduced

into a series containing: the descending powers of 7, which we
may thus represent, viz. '

__BO® 31 @ O
—— -T- +<—r—z— _r'é- sevee, ; -;!.Ti-—.l,"" &-C.

and if we expand the radical in the last expression of V into

a similar series, and use Q( 2 to denote the same thing as for-

merly in No. 4, we shall get, by equating the corresponding
terms,

* Méc. Cél. Liv. 3¢, No. 8.
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B = [ ([ R dR cd' . . QO

In this expansmn B, i , in every case is equal to the mass of
the spheroid: and with regard to the second term, LAPLACE
has remarked that it may be made to disappear by fixing the
origin of R’, which is an arbitrary point, in the centre of gra-
vity of the spheroid. To prove this, we have

B(I) ___f/‘j‘Rn dR’. df“ da' . Q(l)
but dM = R*.dR’.du' . dz'; and R". QV=R’. gy = xR’ '
4 \/1—-”. COS. @ X R'f 1/1—,4. . €os. z’ 4= \/1—— . sin. =
x R’. 1/1.—[,,la.sin.-i;r'=ﬁxx+ &/15—",,,,2.'003?@- x V-t
V1— @ . sin. w x %; where z, 9, % denote as before the co-
ordinates of the molecule dM : therefore, by Sleslitption,
B = /,oxfx dM 4 vV 1— cos.w-xfy,.a'M
+ »1/1,-— . sin, = sz.dM,:
now, if all the planes to which z, Y %, are perpendicular pass
through the centre of gravity ; then, by the nature of that
point, fr.dM =o0; [y.dM =o0; fx.dM = o: therefore
B® = o4
In the expression of B® none of the integrations can be
executed in a general manner, excepting that relative to dR’:
let R denote what R’ becomes at the surface of the spheroid ;

then
B® =SS R"+3~:. did . da’ . QP
"8. When the attracted point is wifhin the spher'did the
value of V will be represented by a series of the ascending
| powers of r: let _
* Méc. Cél. Liv. 3¢, No. g, + Ibid. Liv. 3¢, No. 12.
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V= 4 K2 r 4 6P o 1 89 9 e
then by expanding the radical in the formula (4) into a series
of a similar form, and equating the corresponding terms, we

shall get . o .
i dR'. &, do’ . QU
0= [ =

In this value of b"), the mtegratzon thh re'gard to dR’ can-
not be executed from R’ = o, as in the former case ; because
this expansion of V necessarily supposes that the attracted
point is included within all the attracting matter: let R be
what R’ becomes at the surfaée of the spheroid, which is the
outer surface bounding the attracting matter, and let p be the
radius of the inner surface ; then, with respect to the matter
between the two surfaces, and for a point within them both,
we shall have

b0 = =5 f/{,_, ,_z} dut . da'. Q. (6).

In the case of 7 = 2, the expressxon of the coeflicient takes.

a particular form: for

b(z) _[f ARY, dyt dw Qf?) .

and, by integrating, ,
(ﬂ...ff log. R’ — log. p} d,u dza‘ Q(’z)i

Let us.now seek an expression of the force with which the
whole spheroid attracts a point within the surface. For this
purpose we shall suppose p to denote the radius of a sphere
which completely envelops the spheroid.: and we shall deter-
mine ; first, the value of V, relatively to the matter between
the spheroid and the sphere ; secondly, its value, relatively to.

* Méc. Cél. Liv. 3, No. 13.
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the whole sphere : then the difference of these values will be
the quantity proposed to be investigated.

With regard to the first value of V, it is to be observed that
R is here the radius of the inner, and p that of the outer sur-

face ; therefore (6),
(i) )
b= f Ez':—z - 7:; df" dw' . Q(l

But I say that fQ(') . dy' . do' = o, when the fluent is extended
between the proper limits: for %> w5 and ¢ are the cosines of
the three sides of a spherical triangle, and »'— = is the
angle of the same triangle opposite to the side whose cosine
is 5 and if we put to denote the angle opposite to the side
whose cosine is p'; then since the fluxion of the spherical sur-
face may be either du’. dw’ or dy . d\ ; therefore, when the
fluents are extended to the whole surface of the sphere, we
shall have

S0 d'. do' = [QO . dy.d} = 25 . [QP . dy:
but fQ(i) . dy, between the limits y = — 1 and y = 1,is =9
(No. 2): therefore fQ . dy' . dz' = o.
Consequently the preceding expression of 52 will become

simply o
( ) ! d dw
AL — [/ L. a4 1/«

and the value of V, relative to the shell of matter between
the spheroid and sphere will be expressed by this series, viz.

V=1 [[(f~R) .4 ds'— 1. [[R.dy . du' . Q"
— 7. [flog.R.dy' . da’ . Q¥
).dy . de’
'+T3‘.ff(l(3 =

- &c.

MDCCCXII. K
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As to the value of V for the whole sphere, it is composed
of two parts: one relative to the matter within the attracted
point, which is a sphere whose radius is the distance of that
point from the centre; and the other, relative to the remain-
ing matter of the sphere: the value of the first part'is =
£ . 1°; the value of the second part is = % ff (F'—7") x du’.
dw': therefore the whole value of Vis == —;—’ P L (¢"=—1")
Ldu' . dw.

By taking the difference of these two values, we get

V=—Z.r41 [[R.du. do'" Q©
+r. [fR.dy. dz'. Q"
+7.[[log. R.du' . dw'. Q"

73 Q(.')') cdy L de!
_n [

" QW) - d . de
Tz .[/ R®

this is the value of V when the attracted point is within the
spheroid ; and the terms in it that are unknown depend only
on the radius of the surface, as in the case when the attracted
point is without the surface.

9. We now proceed to the apphcatlon of the formulas that
have been investigated. And in the first place we shall con--
sider a spheroid differing little from a sphere : in which case
R=ua.(14 «.)'), « denoting a coeflicient so small that its
square and other higher powers may be neglected; and y' a

rational and integral function of 1/, v/1 — p” . cos. =" and



extensive Class of Spheroids. by

V1= % . sin. m'. It is to be understood that @ . (14 «.%)
denotes that radius of the spheroid which, produced if neces-
sary, passes through the attracted point; and y is what ' be-
comes when p/ = p and =’ = =,

Supposing the attracted point to be without the surface, we
have No. 7,

B(©) B(2) Bl
V,=“7+_‘+r3 ...... + & l

) 1 + ) |
f’:m.j[R’ P P o

and by substituting @. (1 4 « . ') for R and retaining only
quantities of the first order with regard to «, we shall get,

B® _az:": ‘/:/Q(Z) du . dw . at+3‘/‘fy dy . dw'Q()

but, as has already been proved (No. S)J f Q(') Ly .de'=0:
therefore

B® = . 4't3 ffy’ Ly da' Q(i):
thus the value of B® depends upon the integral f J' A TH

do' . Q(i), which may be found by means of the analytical for-
mulas in the first part of this discourse, as we now proceed
to show.

In the first place, when y' is a rational and integral function
of W only without ', which will be the case in spheroids of

- revolution: substitute for Q(D its developement in No. 5, writ-
ing »'— w for ¢ ; integrate from @'==0 to ='== 2, observing
that the fluents of all the terms which contain the cosines of
o' — = are of the same magnitude at both the limits, and there-
fore they will add nothing to the value of the integral taken
between these limits: then we shall have simply

K2
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f f Y .dy . do. Q(i) = arx C? f Y. dy . c®.
to execute the remaining integration we have only to apply
the method of No. 4: let the integral f f y du . da' . Q® be
denoted ‘by ar x UP; then by the method alluded to,

- . d".yl
. . (= u® . == .dy

() () f du”
U C7x 240 00000 2i °

If y' be a rational and integral function of w!, v/1 —u*.
cos. o' and /1 — p” . sin. ='; it must be transformed into a
series of the sines and cosines of =’ and its multiples; then

=M@ (1—p%. MD. cos. a'f (1—u")2 MP. cos. 20/ &e.
4 1——@’*)"’1‘ NG, sin. =’} (1—-;»’“)2 . N®,sin. 2o’ &cc.
the general term of the series being (1—u")% . M® . cos. na’

+ (1—p")*. N ™ _sin. na', where M® and N® denote ra-
tional and integral functions of w’; and here the integral in
question will consist of as many parts as there are indepen=
dent functions contained in j’. In order to find the part of
the integral resulting from the general term, we must mul-

tiply that term into the expansion of Q(i) investigated in No. 4;
and in combining these two expressions we may omit all the
terms which, after multiplication, would contain the sines and
cosines of the multiples of =’; because these, when they are
integrated with regard to d=’, will be of the same value at
both the limits, on which account they will produce nothing
in the value of the integral: this being observed, the only

term of Q(') which it is necessary to retain is that one contain-
ing ces. n (='—w ), which may be thus written,
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dnc(l) dﬂc;(!)

d n d M
- sin. #w . sin. o’ }

{ COS. "w . COS. nw’

28, (1—w)F . (1—p)% .

and by combining this with the general term of y’, there will
result the following expression which is clear of the sines and
cosines of variable angles, viz.

a grcld) dc(l)
(1=pr)=. ‘-i—;l- {Cosmwffﬁ() 1_, n d" M(n)d .dw'

) g
- sin. ma-xffﬁ(") (1—p")* dc( N dy dw}
this expression again comes under the method of No. 4,; let
~ the integral f f y.ody . de' . Q(i) be denoted, as before, by

27 . U then the part of U derived from the general term
of 3/, will, by the method alluded to, be thus expressed,

ety r(1)
f(l—p.'z)l d M . du!

an? anc® i (et .
(l_p' )?;1-;:71— {COS nwxz46 .............. 2i +sm.nw
ai—=nN@
-k /2 : !
f(l )‘ d rl—n < d;&
240 .00 ieeninns 2i } :

and if all the parts of U be computed successively by means
of this formula, the complete value of that quantity will be
found by collecting them all into one sum.

Having thus determined the value of the integral L/ f Y.
d! . d' . Q() denoted by 27 . U?, we have
B()._. z.97. a+3 U(l)
but it is to be observed, with regard to the case of 7 = o, that
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B® = —‘/J“R3 dy. do' = szdgk'.dw'-l-a.a’ffy'o
du! . do' . Q(°) & 4. or . a. U, Therefore the

value of V for a pomt without the surface of the spheroid, will
be found by this series, viz.

V=4w.a3+2w.a.a3x {U(o)-l-—f;-.U(I)+%-U(2)+&c'}'(5)

3r r

If the attracted point is within the surface, we must operate
upon the series investigated in No. 8 of which the general
term is,

i e s do
. 2

=2 Rz—-z
and if we substitute . (1 4« .»’) for R, and reject the term
which is evanescent as before, and likewise all the terms which
are above the first order with regard to «; it will become
simply,

ai—2 ff y.du'. o' Q()—- o . ad” U(’)

with regard to the particular term log. R. du' . do' . Q® s
g P g w

we have only to substitute for log. R, its value log. a 4~ « . y;
and it will become

a.r ffy dy .da' . Q()""'Q'n‘ ad® . U(z)
also the term L f f R*. a’p,' dw' . QC °) will become by substi-
tution, : -
%J]'a’p-’. dw'. 4 aa‘fy’. dy . dw' . Q(o)_—: 27wa* = 27 . aa®. U

these things being observed, the value of V relative to a point
within the spheroid, will be expressed by this series, viz.
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V= — 2’; + 27 .a" 4 27 . aa”. {U(o) + —2— . U(I)-{- aL:-. u®
+ 5. 0% 4 &} (6)

The formulas (5) and (6) enable us to compute the attrac-
tions of homogeneous spheroids on a point without or within
the surface ; and, for a point in the surface, we may make use
of either series, observing to put 7.==a in all the terms mul-
tiplied by «, and r=a. (14 «.y) in therest. Wheny isa
finite function, the two expressions for V will both stop. It
would be easy to deduce from hence the attractions of hete-
rogeneous spheroids; but having nothing new to offer on this
head, I shall refer the reader to Laprace’s work, No. 14,
Chap. 2, Liv. ge.

‘The two serieses marked (5) and (6) will be found to be
entirely equivalent to the formulas (g)* and (4)- which La-
rLACE has given in the second chapter of the third book of

443
et

the Mécanique Celeste: for in effect the coefficient of «

' i

in two of the serieses; and the coefficient of « . -:—:;, in the
a

other two, are only different expressions of the same integral

f f y .y . da' . Q(i), the symbol 3’ being always understood
to denote a rational and integral function of three rectangular
co-ordinates of a point in the surface of a sphere. In point of
result therefore the two methods are one and the same, and
the solutions they furnish are both applicable in the same cir-
cumstances. Neither of them can be of use, unless the radius
of the spheroid be first reduced into such a function as j’ is
supposed to denote. The one solution can claim no preference

* No. 11, + No, 13.
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to the other, except in deducing the same conclusion with
greater clearness and expressing it with greater simplicity,
and in a form better fitted to fulfil the views of the analyst.
In these respects it can hardly be denied that the procedure
delivered in the preceding pages has some advantages above
that of the author of the Meécanique Celeste. The analysis here
given is direct ; ‘and it exhibits the several coefficients in sepa-
rate and independent expressions derived immediately from
the radius of the spheroid. On the other hand Laprace’s
investigation is indirect; and the coefficients are found suc-
cessively by decomposing the radius of the spheroid into a
series of parts which follow a known law. If we now com-
pare the two methods with respect to the grounds on which
the investigations are founded we shall not find the same
agreement between them. In this paper it is admitted as a
necessary hypothesis, that the radius of the spheroid must be
a rational and integral function of three co-ordinates of a point
in the surface of a sphere: and, in consequence, the result of
the analysis is limited to spheroids of that description. La-
PLACE, grounding his investigation on a property which, ac~
cording to his demonstration, belongs to all spheroids that
differ little from spheres, seems to prove that the radius of
such a spheroid cannot be an arbitrary expression, and in this
inference it is necessarily implied that the radius must be such
a function as we have supposed it to be.* What in the one

* Méc. CéL Liv. 3e, No. 11, In No. 11, by substitution in his fundamental theo-
rem, LapLacs obtains this formula

ul® sy s p®
+ +75

4«1:.a’y=-a— = + &c.:

of this he remarks, a few lines below; ¢ Cette expression de y n’est donc point
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solution is- assumed as a necessary hypothesis without which
the investigation will not succeed, in the other, is derived as
a necessary consequence of a more general supposition. Here
then the two methods are so much at variance, that if one be
rigorous and exact, the other cannot be exculpated from the
charge of erroneous or insufficient reasoning. This contra-
diction between the preceding analysis and the procedure of
LAPLACE is entirely consonant to the conclusions obtained in
my former paper alluded to in the beginning of this discourse;
and the origin of it is to be sought for in the error I there
pointed out in the investigation of that geometer. It cannot
be denied that an error of calculation does exist in the de-
monstration of the theorem on which that author’s method is
‘grounded : his reasoning is therefore imperfect and inconclu-
sive; and the inferences he has drawn from it cannot be supi
ported in opposition to a rigorous analysis.

- 10. The same procedure which has been applied to approxi-
mate to the attractions of spheroids differing little from spheres,
may likewise be employed to find accurate expressions in
serieses of the attractive forces of any spheroid, provided the
radius of it be such a function as the analysis requires. In
both cases the research turns upon the same sort of integrals.
Resume the general term of the series for the attractive force
on a point without the surface, viz.

<« arbitraire, mais elle derive du developpement en serie, des attractions des sphea
-s¢ yoides,”
1In this formula it is neeessarily implied, that y is a rational and integral function

@ g ,

of three rectangular co-ordinates of a sphere; because all the terms &c.

—_— -
a a*

are necessarily such functions.
MDCCCXII, L
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.(') =13 fthH do! . d' . Q0

suppose R to be a function of b ’ only, without ='; then, as
before,

@ _ aw.C® & RIFS
B_ --—";’-!‘:é"’ of(l"'l"‘) d{ 'dl-‘

) 24000ttt Y
but if R be a function of the most general kind, then it must

be reduced to this form, viz.
R = M© + (1— ”) M ). COs. za’+ &c.

+ (1—p)*. N sin, o 4 &c.:
and the several parts that B() will consist of must be sepa-
rately computed, as in the analogous case already considered.

The same process will apply when the attracted point is within
the surface.

11. To complete the plan of this discourse, it remains that
we apply the theory laid down in it to the case of the ellip-
soid. Let the semi-axes be &, ¥, &", the first being the least
of all the-three; and let z, y, =, respectively parallel to the .
same axes, be three co-ordinates of a point in the surface :
then will the equation of the solid be

x¥
k3+kll+kﬂﬂp"'

put z=Ryu’; y=R. ¥ 1—u". cos.a’; andz.... R.VI1— ",
sin. =’; then by substitution,

Rz{ 2 + (l—»’) cos. ?n" + (l-—pc") sin. ‘b’} =
farther, let e = 25’3 f== F";; and s = p, "+ ¢ (1— ") cos. 'z’
+ f. (1=p") . sin. *’; then R = _' : and if this value. of
R, or the radius of the ellipsoid, be subsu.tu-ted in the general
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term of the series for the attractive force on a point within
the spheroid (No. 8) that term will become

‘_Z.Ll_z ffs E L dyt. dwt. QO

In the first place I say that all the terms in which 7 is odd

S e+f ’ e~f )

‘are evanescent. Fors= —= +(1—=7) w5 (1)
iz |

cos. ea’; whence it follows that s 2 may be expanded into a

series of this form, viz. A® + AW, cos. 2w’ 4= AP cos. 4

.A™  cos. ena’ .. &c.; of which the general term is A®

. cos. ena’, and if we combine this quantity with the expansion

of Q() (No. 5), there will result one term, and only one, in-
dependent of sines and cosines, viz.

= ae® az &e® oy,
B () S S ()T A e d

d /'zn

all the other terms, produced by the multiplication, contain sines

or cosines of variable angles; on which account they vanish

when they are integrated with regard to da’ between the re~

quired limits : since s contains no other power of ' but ", it is
{2

plain that every coefficient of the developement of s 2, as A®,

will be an even function of W', or will contain only even powers

. of that quantity: and, because 7 is odd, therefore ¢®, and all

its fluxions of the even orders, will be odd functions of w':

upon the whole then the quantity under the double sign of

integration will be an odd function of y'; or it will be an assem-

blage of the odd powers of that quantity: therefore the in-

tegral, between the limits w'=1 and w'= —1, is eaual te
Le ‘
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‘nothing- (No. 4).  Therefore all the terms are evanescent
when 7 is odd.
Again I say that all the terms are evanescent when 7 is even,

- i-2
~except when it is == 2. For in this case s 2 will be an inte-
ger power, and it will contain a finite number of terms which
‘may be genemlly represented. thus, viz.

. ' (}.‘1—,-1.14"‘)55‘. M. cos. ena';

M® ‘being a rational and integral function of w': and this
,:‘QLlantit'y when combined with the developement of Q(i) , will
~ produce one termx and’ only one, clear of sines and cosmes,
iz,

dZTICCI) (2;1) ]2 on dZ?!(’/(l) (n)
—_—) T, — (1—u)% <MY du . dat
(1—p)¥ S E e

now since p,” 1S the greatest power ins, the greatest power:
: z-—z

in s 2 = will be y, ? therefore (1—p)* . M® ) . cannot con-
tain any power of ' greater than 7—g, nor M™ any greater

than i—en—g, which number the dimensions of M™ cannot
- pass: but i—an, greater than /—eon—e, denotes the dlmenm

anc'()
sions of &= = therefore, by a property of this sort of inte-
d ' * -

- grals already demonstrated (No. 4), the preceding quantity
is evanescent. Therefore all those terms of the series are-
evanescent in which 7 is an even number; but from this the

- case of 7==¢2, when the term assumes, a particular form, must

be excepted.

,_ ~ If now we reject all the terms that have been proved to be
evanescent, we shall have, for a pomt within or in the surface-
of the ellipsoid,
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Vo= = 22 DU 2 log. s a'w de“

in the last term T have written — £ log. s for log. v =log. k-

w— L log. 53 because fQC ). du! . de =o.

Before we pursue the investigation farther, we shall stop to
demonstrate a property of the attractions of a shell of homo-
geneous matter bounded by the surfaces of two- ellipsoids,
similar to one another and' similarly placed, on a point within
the shell. If we suppose % to denote the axis of the greater
ellipsoid, and put % for the corresponding axis of the smaller
one; then the value of V. relatively to the latter solid will be
found merely by changing % into % in the last expression ;. be~
cause s contains no quantities but such as are common to the
two solids: therefore the value of V, relatively to the shell
of ‘matter included between the two surfaces, will be equal to

k*:b .'/fd,;,.sdm;
a quantity which is independent on the position of the attracted
point: therefore the differential coefficients of V for any co-
ordinates of the attracted poi.nt'are evanescent; and conse-
quently so are the attractive forces parallel to the co-ordinates
(No. 6).. Therefore a material point within such a shell is
attracted equally in opposite directions.
Let us now investigate the value of

‘/‘-fa'/;.’dm'.
putp=e - (1—e).pu"*; g=f+ (1—f). ,thens—-p

sin. w sin. % !

€os.’a’ 4= ¢ . sin.*a’: assume v —7 = thex f-’—-::

cos. & cos. u’

;—/;—.—.: ; therefore by restoring the values of p and q, we get
29



»8 Mr. Yvory on the Attractions of an
dp«' . dw Y & d[[. du ) —
ff S‘ jfv{é-l-(l—e)-[ﬁl,'} . {f’l‘(l"'f)'l‘"z

g, I—e Kk a. If K2R 2,
Iet-—;-__-:—-?;-:}\, -;—::-A»k—;—=>\’, and

)  dx . .
F — between the limits r =0 and r=1:
fv(;“*x*).(l%”x’) en th r==oand r==1

then observing that the preceding integrals increase as much
from p/== — 1 to p'=0, as they do from W' ==o to w' =13
and likewise that the limits of # are from # =0 to ¥ == a7,

we shall get
Booppded.ds _ aw b n
:[f = Ver ' ¥
It remains to find the value of

-—fflog S, dp. dw’. Q(z)

Taking the value of Q™ in terms of (No. 3), we have
r Q(,Z) =1. (3¢ —3): leta, b, ¢, denote the co-ordinates of

‘the attracted point; then a==r.u; b==r.v1—x*. cos. w;
c=r.v 1—y?. sin. = ; therefore
roy=a.p F bV 1—p>. cos.a' ¢V T—p@ . sin.
co‘nSeq‘uently ‘
QP =t (2u— 1) b {2(1=p") cos. % — 1}
4o {2 (1—ph) sinw'— 1}
+ gab. W V' 1— . cos. o' 4 gac. ! VI— ", sin. o’
- 3b§ . (1—u'*) . cos. =’ sin. »":
but log. s may be'reduced into a*series of this form, viz.
CA® AW, cos.ga’ 4+ A cos. gt &e.
and we may neglect all*such ‘parts of. Q@ as'multiplied by
this sexies would produce only quantities containing sines and
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cosines: on this account, we may«‘make»
P QP =0 (30— %) + b {£(1—u") cos.a'— 1]
+ . { .g. ( 1--»;;,") sin. "z’'— g} :
therefore,.
;fflogs dp." da'. Q(z)' fflog s.du' . du' (10" —1)
+ = fflog s.du! do’. {3 (1— ") cos. s’ — £}
+ = -5- J‘flog. s.dy!. da'. {—}(1-——@":)_ sin, *'— %}
Let the term. multipliéd- by -‘; be integrated by parts with-

p«’—u )

respect to dy/, then f log.s ..du". (é-’f- - %) = log.s x

—yost g o

2 e dw
therefore, obser.ving‘ that the term without the sign of inte-
gration vanishes both- when p/= — 1 and W' = 1;. the value

of the coefficient of < will be equal to

P T e g
S = v dutde
and because — = :/—:_,f_-q-; therefore the first term of the quan--

tity sought will be equal to
a Cout, dpt . — zqr.a.“.
Vietamo.] Jre=pw}  ?
which is equal to

‘27 . a® -2 de . zoé.a"j
v V varRd) . a4 30

the fluent here being taken from z==0 to z =1.. Seeking to
express this value by means. of the integral F, I have found
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2.de : X3 3
in eneral o] ‘ —
g fV(l+A x-,,) .(l+.7‘lzx2) 'V(l__‘_;‘zx?.) . (l+?\lzxz) + A

dF 1 (dF

therefore, making x ==1, the first term will become,
2% . a® 1 1 [dF 1 [dF 2wt
v o {V(1+A‘).(x+7\") +3 (dA) T (dh")} 3 -
With regard to the term containing b7, it may be changed

‘into an equivalent expression similar to the first term we have
just been considering: for if, at entering on this investigation,

we had substituted in the equation of the solid, z =R .V 1—p”
.co8.%’; y=R'.w; z=R. vV 1—u". sin.%s’; which sub-
stitutions are entirely arbitrary ; we should have found s =
ew” 4+ (1—p”) cos.’a’ = f x (1—w”) sin. *s’; and the term
we are seeking, multiplied by b*, would have been changed
into

-? .fflog‘. s.dy . do’. (3 p"=—1):
-and hence by proceeding as before, we derive this value of
‘that term

b e W du ds’ b " 1 .

Bt B o g b
and if we put p =14 (e—1).p"; =f+ (e—f) . p";
also s/“‘ LS s‘""‘ then, s=p. cos. ‘o’ + ¢ . sin.’a’;

COS '

‘T = ;—P;, consequently, by substitution, and integrating with

regard to %, and confining the integration with regard to u’ be-
tween the limits p'= 0 and w'=1; we shall get,

2, du! 20 . b
27{.6’. ——— b £ ~_..-:—.._——-l-——.

v Prte=n.wrf o rren e K
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If we make ' == —====—=1* the integral in the last ex~

Vetr(1- e+ (1—e)a?
pression will be transformed into

all-

= . f =k, L (1),
Vf ¢ {,,H,xz}%,, {x-{-?\"z‘}% T W oA \da)

therefore the value of this term is
. b . 1 (dﬁ) - zvr.‘b’.

V{f da 3
And, by proceeding in a manner entirely analogous, it may
be shewn ‘that the rerﬁaining term multiplied by ¢?,is equal to
.. 2wmack -‘ s (df:') 2wt
A

If M denote the mass of the elhpsoxd then M = %, kkk”

4w RS 27 3M
= ;- an byl

3. Vef j Vief  zk
parts of V, into one sum, we have

V—'}M F— SMa {v(1+#)(1+>~")+ (F)+7"—(§§)}q
+ﬂ;‘-;;”-f~%(;;)+%5—o%(§§)-

) ka2
-_k-"-— = 7\’; T =] }\Ia.

—-—f e - (from r =o,t0 z=1).
V(1 +22%) . (141%2%) J

The case of an oblate elliptical spheroid of revolution cor-
responds to the supposition of 2=4%" or A ==": but in taking
the partial fluxions of F we must attend to the peculiarity

therefore by collectmg all the

that takes place when A==2’: for in general dF = (d—F-) dn 4=

dz,) dN ; and hence when A =), dF = z(dF) dx: now when

A=A, F_ — . arc. tan. a; consequenﬂy = (dF) = % (dF)

dar
* Méc. Cél. Liv. e, No. 3.
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= — — (arc. tan. A —

- _:,‘,_): in this case then we shall

have

M M. s>
V=22, 2 .arc.tan.x-—é—-—;a-.—‘-. A — arc. tam. A
2k 2k

~
zk, (P, w . {arc. tan. A — TT»T’}

If this value of V be substituted in the equation of the sur-
face of a homogeneous fluid mass which is in equilibrium by
the joint effect of the attractions of its molecules and a rota-
tory motion ;* it will be proved that the oblate spheroid satis-
fies the conditions of equilibrium, and the relation between
the velocity of rotation and the eccentricity of the spheroid
will likewise be determined.

* 'Méc. CéL Liv. 3e,>No. 23 et 24,



